
HPLC TECHNOLOGY

High Performance Liquid Chromatography, or HPLC, is the gold standard method for hemoglobin A1c testing. Using Tosoh's proprietary, non-porous column, our ion-exchange methodology provides chromatographic results in high resolution chromatograms without loss of precision.

Not all HbA1c testing methods are the same. Using the right method gives you confidence in the results you deliver. **Choose wisely. Choose Tosoh.**

TOSOH BIOSCIENCE

CHOOSE WISELY. CHOOSE TOSOH.

The Tosoh Automated Glycohemoglobin Analyzer HLC-723G8 (G8) analyzer offers the laboratory all the features and benefits you need for Hemoglobin A1c testing.

The G8 is an ideal solution for rapid and reliable diabetic monitoring and diagnosis.

*Available in Lab Automation Model

Simplified Operation

Simple and intuitive user interface requires minimal interaction and maintenance.

Automated start-up and daily maintenance, only requires the push of a button to begin processing samples.

Precision & Reliability

With less than 2% CVs, provides confidence in the results you deliver.

Precise engineering and a proven record of high meantime between failure of over 300 days translates to constant, reliable performance.

Efficiency & Speed

Equipped with direct primary tube sampling and cap piercing capabilities enables the user to load different sample types and test tube sizes in any order and any rack.

Continuous sample loading enables high throughput and fast results with analysis time of 1.6 minutes.

Compact & Flexible

Small, benchtop footprint that fits into any location.

Flexible platform options are available to meet the increasing demands of every laboratory:

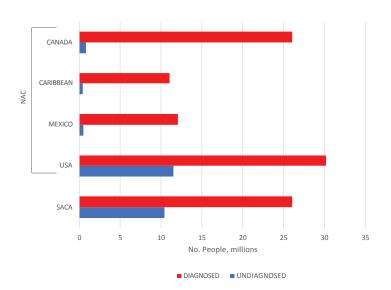
- G8 90 Sample Loader Model
- G8 290 Sample Loader Model
- G8 LA (Line Automation) Model

DIABETES

Diabetes is a condition called continuous hyperglycemia where the blood glucose, or blood sugar, levels are too high. The underlying cause is due to the inability of insulin, a hormone produced by the pancreas, to be produced or function effectively in order to regulate blood glucose levels.

Types of Diabetes

TYPE 1 DIABETESBody does not produce enough insulin

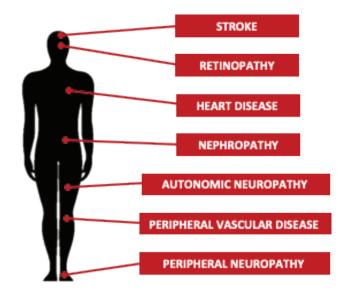


TYPE 2 DIABETESBody produces insulin but cannot use it properly

GESTATIONAL DIABETESTemporary condition during pregnancy

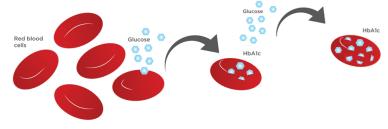
National Prevalence of Diabetes¹

- By 2045, diabetes in North America and Caribbean (NAC) and South and Central America (SACA) are expected to increase by 35% and 62% respectively.
- Globally, NAC and SACA is responsible for 52% of diabetes-related healthcare expenditure.


Considerations for an A1c Method²

- Specific measurement of A1c
- Precision
- · NGSP certified method
- Hemoglobin variant detection when present
- Removal of interferences

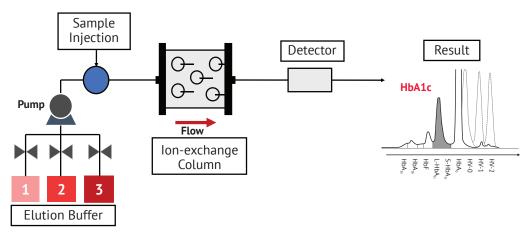
Tosoh's ion-exchange HPLC methodology for HbA1c testing meets performance characteristics by offering:


- ✓ Direct determination of stable HbA1c
- ✔ Precision of <2% CV</p>
- Analyzers that are NGSP certified
- ✓ Detection of hemoglobin variants

Consequences of Diabetes

Importance of HbA1c Testing

Hemoglobin A1c, also known as HbA1c or A1c, is a blood test that measures a person's average blood glucose levels over a period of 1 to 3 months. HbA1c test measures the percentage of a person's glycated hemoglobin, glucose that is bound to the red blood cell, in the bloodstream.



Tosoh's HbA1c test is used in three applications:

- For identifying individuals at risk for developing diabetes
- For aid in diagnosis of diabetes
- For monitoring, management, and follow-up treatment of diabetes

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

High performance liquid chromatography, or HPLC, is an analytical chemistry technique to separate, identify, and quantify each component in a mixture. In ion-exchange chromatography, the glycated hemoglobin components are separated according to their different electrical charge. As fractions elute, the time it takes to separate that fraction is called the retention time. The retention times for each fraction determines the identity of the component.

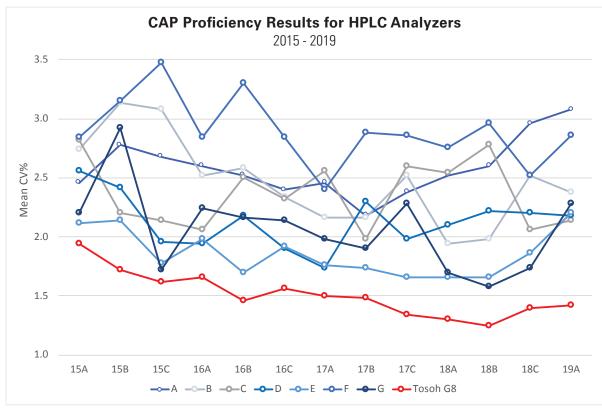
Tosoh's ion-exchange methodology utilizes a proprietary, in-house developed, non-porous polymer resin column that provides high resolution chromatograms and high efficiency separation without loss of precision. The HbA1c measurement yields direct determination of stable HbA1c through clear separation between labile HbA1c and stable HbA1c by generating a chromatogram that contains key valuable information about the patient including the presence of a hemoglobin variant or hereditary persistence of fetal Hb- a feature unique to the HPLC ion-exchange methodology.

HbA1C Method Comparison³

METHOD	ADVANTAGES	DISADVANTAGES	TOSOH SOLUTIONS		
ENZYMATIC	No Hb variant interference	Unable to detect variants	 Detection of hemoglobin variant D, S, C, and E Removal of interference* 		
IMMUNOASSAY	No Hb variant interference	Unable to detect variants	 Detection of hemoglobin variant D, S, C, and E Removal of interference* 		
BORONATE AFFINITY	No/Minimal Hb variant interference	Unable to detect variants Measures glycated Hb and not just HbA1c	 Direct determination of stable HbA1c Detection of hemoglobin variant D, S, C, and E Clear separation between labile HbA1c and stable HbA1c 		
CAPILLARY ELECTROPHORESIS	High resolution Hb variant detection	Low volume through-put	 90-290 sample loader for automatic processing High walk-away time Quick TAT for result 		
ION-EXCHANGE HPLC	High precision High efficiency Clear separation High resolution chromatograms Direct determination of s-HbA1c Detection of D, S, C, and E Rapid, automatic processing	Risk of co-elution of variants and interference POROUS • Decrease or loss of efficiency for larger proteins • Size exclusion	NON-POROUS • Equally efficient for proteins spanning a wide range of molecular weights • No size exclusion • No loss of efficiency		

^{*} Available on software version 5.24 or higher; not cleared by FDA; for OUS only

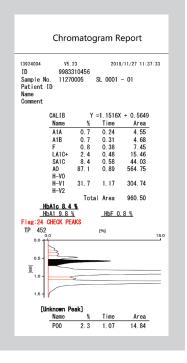
FEATURES & BENEFITS


Gold Standard Technology

- Ion-exchange HPLC is the gold standard for HbA1c measurement
- Ion-exchange HPLC was used in the Diabetes Control and Complications Trial, or DCCT, study undertaken in the United States

Accuracy and Precision

• Less than 2% CV


No Clinical Interference

- Clear separation between L-HbA1c and s-HbA1c
- HbAD, HbAS, and HbAC separated from A0 peak
- No clinical interference with HbAD, HbAS, HbAC, and HbAE*
- No clinical interference with labile A1c, acetylated Hb, aldehyde Hb, and carbamylated Hb

Detailed Chromatographic Result

- Renowned precision, efficiency, and separation
- High resolution chromatograms
- Detailed report showing current calibration and characteristics (retention, percentage, and retention time of each fraction.
- Value of HbA1c %

^{*} Available on software version 5.24 or higher; not cleared by FDA; for OUS only

TECHNICAL SPECIFICATIONS

Whole Blood

Column oven

Detector unit

Column connection

Analytes	HbA1c (Sa1c), HbF, HbA1 (Total A1)	021560	HLC-723G8 (Main Unit)
	Ion-exchange high performance liquid chromatography	021674	G8-LA (Lab Automation)
Principle	Visible two-wavelength absorption	021561	G8-90SL (90 Sample Loader)
Sample Requirement	Whole blood or diluted blood (Preserved with EDTA)	021562	G8-290SL (290 Sample Loader)
Sampling Volume	Whole blood: 4 µL	021955	TSKgel G8 Variant HSi (Column)
	Diluted blood: 80 μL	021956	G8 Variant Elution Buffer HSi No. 1
Throughput	1.6 minutes per sample	021957	G8 Variant Elution Buffer HSi No. 2
Data storage	On-board memory up to 800 samples	021858	G8 Variant Elution Buffer HSi No. 3
		018431US	HSi Hemolysis & Wash Solution
Main Unit		018767	Hemoglobin A1c Calibrator Set
Sampling	Cap-piercing of primary sample tubes	992133	Hemoglobin A1c Control

HbA1c Calibrator Set

PART NUMBER & DESCRIPTION

Elution Buffers (Variant Analysis Mode) and Hemolysis & Wash Solutions

Analysis Column

Sample Loading Units

Sample loading capacity G8-90SL: 90 samples and one STAT position

in dilution port

Finger-tight type

LED colorimetric detector

G8-290SL: 290 sample and one STAT position

Automatic dilution by Hemolysis and Wash solution

Sample holding 10 samples/rack

Sample vial 12 - 15 mm x 75 - 100 mm primary tubes and Tosoh vials

Thermomodule in aluminum block

Barcode specifications NW-7, CODE39, ITF, CODE128. JAN, COOP 2 of 5,

Industrial 2 of 5

System control/Data processing

Display & Input Liquid crystal display touch panel

Thermal paper (roll paper), Smart Media, LIS or 501RP+ Output

RS-232C serial standard (bi-directional) Communication

 $15 - 30^{\circ}$ C Operating temperature

Power requirement AC 100 - 240 V. 50/60 Hz. 180 VA

Dimensions/Weight

90SL Model W 21" (530 mm) x D 20" (515 mm) x H 19" (482 mm)

75 lbs (34.0 kg)

290SL Model W 44" (1120 mm) x D 21" (530 mm) x H 19" (482 mm)

114 lbs (51.5 kg)

LA Model W 21" (530 mm) x D 29" (723 mm) x H 19" (482 mm)

79.4 lbs (36.0 kg)

References:

1. IDF Diabetes Atlas Eighth Edition 2017

2. Hanley T, Signorelli H. Considerations in Choosing Hemoglobin A1c Methods. CLinical Laboratory News. April 1, 2015.

3. Yedla N, Kuchay MS, Mithal A. Hemoglobin E disease and glycosylated hemoglobin. Indian J Endocr Metab 2015;19:683-5.

For more information, call 1.800.248.6764

Tosoh products are for Prescription use only as In-Vitro Diagnostics

TOSOH BIOSCIENCE

www.tosohbioscience.us

